Header
James Brock Staff Photo

AP Calculus 

Kahoot to study for Memory test 3

Advanced Placement Calculus Materials:

Homework Solutions

Worksheets

Notes

a PDF version of the Text book is located here

a PDF version of the solution manual to the textbook is located here

These books may be a different edition than ours, but they are very similar.

Topics covered in the first two or three semesters of college calculus. Everything from limits to derivatives to integrals to vector calculus. Should understand the topics in the pre-calculus playlist first (the limit videos are in both playlists)

1.     Introduction to Limits (HD)

2.     Introduction to Limits

3.     Limit Examples (part 1)

4.     Limit Examples (part 2)

5.     Limit Examples (part3)

6.     Limit Examples w/ brain malfunction on first prob (part 4)

7.     Squeeze Theorem

8.     Proof: lim (sin x)/x

9.     More Limits

10.   Epsilon Delta Limit Definition 1

11.   Epsilon Delta Limit Definition 2

12.   Calculus: Derivatives 1 (new HD version)

13.   Calculus: Derivatives 2 (new HD version)

14.   Calculus: Derivatives 2.5 (new HD version)

15.   Derivative Intuition Module

16.   Calculus: Derivatives 1

17.   Calculus: Derivatives 2

18.   Calculus: Derivatives 3

19.   The Chain Rule

20.   Chain Rule Examples

21.   Even More Chain Rule

22.   Product Rule

23.   Quotient Rule

24.   Derivatives (part 9)

25.   Proof: d/dx(x^n)

26.   Proof: d/dx(sqrt(x))

27.   Proof: d/dx(ln x) = 1/x

28.   Proof: d/dx(e^x) = e^x

29.   Proofs of Derivatives of Ln(x) and e^x

30.   Extreme Derivative Word Problem (advanced)

31.   Implicit Differentiation

32.   Implicit Differentiation (part 2)

33.   More implicit differentiation

34.   More chain rule and implicit differentiation intuition

35.   Trig Implicit Differentiation Example

36.   Calculus: Derivative of x^(x^x)

37.   Introduction to L'Hopital's Rule

38.   L'Hopital's Rule Example 1

39.   L'Hopital's Rule Example 2

40.   L'Hopital's Rule Example 3

41.   Maxima Minima Slope Intuition

42.   Inflection Points and Concavity Intuition

43.   Monotonicity Theorem

44.   Calculus: Maximum and minimum values on an interval

45.   Calculus: Graphing Using Derivatives

46.   Calculus Graphing with Derivatives Example

47.   Graphing with Calculus

48.   Optimization with Calculus 1

49.   Optimization with Calculus 2

50.   Optimization with Calculus 3

51.   Optimization Example 4

52.   Introduction to rate-of-change problems

53.   Equation of a tangent line

54.   Rates-of-change (part 2)

55.   Ladder rate-of-change problem

56.   Mean Value Theorem

57.   The Indefinite Integral or Anti-derivative

58.   Indefinite integrals (part II)

59.   Indefinite Integration (part III)

60.   Indefinite Integration (part IV)

61.   Indefinite Integration (part V)

62.   Integration by Parts (part 6 of Indefinite Integration)

63.   Indefinite Integration (part 7)

64.   Another u-subsitution example

65.   Introduction to definite integrals

66.   Definite integrals (part II)

67.   Definite Integrals (area under a curve) (part III)

68.   Definite Integrals (part 4)

69.   Definite Integrals (part 5)

70.   Definite integral with substitution

71.   Integrals: Trig Substitution 1

72.   Integrals: Trig Substitution 2

73.   Integrals: Trig Substitution 3 (long problem)

74.   Periodic Definite Integral

75.   Simple Differential Equations

76.   Solid of Revolution (part 1)

77.   Solid of Revolution (part 2)

78.   Solid of Revolution (part 3)

79.   Solid of Revolution (part 4)

80.   Solid of Revolution (part 5)

81.   Solid of Revolution (part 6)

82.   Solid of Revolution (part 7)

83.   Solid of Revolution (part 8)

84.   Sequences and Series (part 1)

85.   Sequences and series (part 2)

86.   Maclauren and Taylor Series Intuition

87.   Cosine Taylor Series at 0 (Maclaurin)

88.   Sine Taylor Series at 0 (Maclaurin)

89.   Taylor Series at 0 (Maclaurin) for e to the x

90.   Euler's Formula and Euler's Identity

91.   Visualizing Taylor Series Approximations

92.   Generalized Taylor Series Approximation

93.   Visualizing Taylor Series for e^x

94.   Polynomial approximation of functions (part 1)

95.   Polynomial approximation of functions (part 2)

96.   Approximating functions with polynomials (part 3)

97.   Polynomial approximation of functions (part 4)

98.   Polynomial approximations of functions (part 5)

99.   Polynomial approximation of functions (part 6)

100.   Polynomial approximation of functions (part 7)

101.   Taylor Polynomials

102.   Exponential Growth

103.   AP Calculus BC Exams: 2008 1 a

104.   AP Calculus BC Exams: 2008 1 b&c

105.   AP Calculus BC Exams: 2008 1 c&d

106.   AP Calculus BC Exams: 2008 1 d

107. Calculus BC 2008 2 a

108. Calculus BC 2008 2 b &c

109. Calculus BC 2008 2d

110. Partial Derivatives

111. Partial Derivatives 2

112. Gradient 1

113. Gradient of a scalar field

114. Divergence 1

115. Divergence 2

116. Divergence 3

117. Curl 1

118. Curl 2

119. Curl 3

120. Double Integral 1

121. Double Integrals 2

122. Double Integrals 3

123. Double Integrals 4

124. Double Integrals 5

125. Double Integrals 6

126. Triple Integrals 1

127. Triple Integrals 2

128. Triple Integrals 3

129. (2^ln x)/x Antiderivative Example

130. Introduction to the Line Integral

131. Line Integral Example 1

132. Line Integral Example 2 (part 1)

133. Line Integral Example 2 (part 2)

134. Position Vector Valued Functions

135. Derivative of a position vector valued function

136. Differential of a vector valued function

137. Vector valued function derivative example

138. Line Integrals and Vector Fields

139. Using a line integral to find the work done by a vector field example

140. Parametrization of a Reverse Path

141. Scalar Field Line Integral Independent of Path Direction

142. Vector Field Line Integrals Dependent on Path Direction

143. Path Independence for Line Integrals

144. Closed Curve Line Integrals of Conservative Vector Fields

145. Example of Closed Line Integral of Conservative Field

146. Second Example of Line Integral of Conservative Vector Field

147. Green's Theorem Proof Part 1

148. Green's Theorem Proof (part 2)

149. Green's Theorem Example 1

150. Green's Theorem Example 2

151. Introduction to Parametrizing a Surface with Two Parameters

152. Determining a Position Vector-Valued Function for a Parametrization of Two Parameters

153. Partial Derivatives of Vector-Valued Functions

154. Introduction to the Surface Integral

155. Example of calculating a surface integral part 1

156. Example of calculating a surface integral part 2

157. Example of calculating a surface integral part 3

158. 2011 Calculus AB Free Response #1a

159. 2011 Calculus AB Free Response #1 parts b c d

160. 2011 Calculus AB Free Response #2 (a & b)

161. 2011 Calculus AB Free Response #2 (c & d)

162. 2011 Calculus AB Free Response #3 (a & b)

163. 2011 Calculus AB Free Response #3 (c)

164. 2011 Calculus AB Free Response #4a

165. 2011 Calculus AB Free Response #4b

166. 2011 Calculus AB Free Response #4c

167. 2011 Calculus AB Free Response #4d

168. 2011 Calculus AB Free Response #5a

169. 2011 Calculus AB Free Response #5b

170. 2011 Calculus AB Free Response #5c.

171. 2011 Calculus AB Free Response #6a

172. 2011 Calculus AB Free Response #6b

173. 2011 Calculus AB Free Response #6c

174. 2011 Calculus BC Free Response #1a

175. 2011 Calculus BC Free Response #1 (b & c)

176. 2011 Calculus BC Free Response #1d

177. 2011 Calculus BC Free Response #3a

178. 2011 Calculus BC Free Response #3 (b & c)

179. 2011 Calculus BC Free Response #6a

180. 2011 Calculus BC Free Response #6b

181. 2011 Calculus BC Free Response #6c

182. Error or Remainder of a Taylor Polynomial Approximation

183. Proof: Bounding the Error or Remainder of a Taylor Polynomial Approximation

184. 2011 Calculus BC Free Response #6d